Fintech Acceptance Among MSMEs: A Post-Covid 19 Response


  • Ulfa Nurhayani State University of Medan
  • Faisal Rahman Dongoran University of Muhammadiyah North Sumatra
  • Dedy Husrizal Syah State University of Medan
  • Gaffar Hafiz Sagala State University of Medan



Subjective norms, perceived usefulness, feeling safety, perceived ease of use, Fintech, MSME


The primary objective of this research is to assess the determinants influencing the adoption of Fintech among MSMEs in Medan City, focusing on MSMEs following the post-pandemic period. This study used an online survey among 156 MSMEs in Medan City. This research uses the Structural Equation Modeling - Partial Least Square (SEM-PLS) approach to analyze the conceptual model, utilizing the SmartPLS version 3 analysis tool. The study's results found that perceived ease of use and subjective norms influence the perceived usefulness of Medan City MSME actors in using Fintech. Overall, the results of this study indicate that perceived ease of use, perceived usefulness, subjective norms, and feeling of safety have a positive and significant effect on the usage of Fintech among MSME actors in Medan City. The results of this study also provide practical implications for using Fintech for MSMEs in Medan City in the new normal era (after the COVID-19 pandemic).

Author Biographies

Ulfa Nurhayani, State University of Medan

SINTA ID: 6701372, GS ID: f78AqGkAAAAJ

Faisal Rahman Dongoran, University of Muhammadiyah North Sumatra


Dedy Husrizal Syah, State University of Medan


Gaffar Hafiz Sagala, State University of Medan

SCOPUS ID: 57202453159, SINTA ID: 5998396, GS ID: u2AwCDsAAAAJ


Ajibade, P. (2018). Technology acceptance model limitations and criticisms: Exploring the practical applications and use in technology-related studies, mixed-method, and qualitative research. Library Philosophy and Practice (ejournal), 1-13

Ajzen, I. (2020). The theory of planned behaviour: Frequently asked questions. Human Behavior and Emerging Technologies, 2(4), 314–324.

Al-Qudah, A. A., Al-Okaily, M., Alqudah, G., & Ghazlat, A. (2022). Mobile payment adoption in the time of the COVID-19 pandemic. Elec¬tronic Commerce Research, 24(1), 427-451.

Al-Suqri, M. N., & Al-Kharusi, R. M. (2015). Ajzen and Fishbein's theory of reasoned action (TRA)(1980). In Information seeking behaviour and technology adoption: Theories and trends, 12(1), 188–204.

Anastasia, N., Setiadiwiria, O. C., & Kunto, Y. S. (2019). Difference between financial intelligence on millennials, Gen X, and baby boomers. BISMA (Bisnis Dan Manajemen), 12(1), 15–28.

Andriyanto, D., Mustofa, I. A., & Prasetya, F. (2022). Analisis minat penggunaan fintech berdasarkan konsep ECT-IS. AKUNTABILITAS: Jurnal Ilmiah Ilmu-Ilmu Ekonomi, 15(2), 61–75.

Asmoro, P. S., Aini, E. K., & Nurlaily, F. (2022). Tax policy and financial access: implications for Entrepreneurial Intention and Entrepreneurial Behavior Among Generation Z. Jurnal Akuntansi dan Keuangan, 24(2), 57–67.

Bakkabulindi, F. E. K. (2014). A call for a return to Rogers' innovation diffusion theory. Makerere Journal of Higher Education, 6(1), 55–85.

Bezovski, Z. (2016). The future of mobile payment as an electronic payment system. European Journal of Business and Management, 8(8), 127–132.

Bommer, W. H., Rana, S., & Milevoj, E. (2022). A meta-analysis of eWallet adoption using the UTAUT model. International Journal of Bank Marketing, 40(4), 791-819.

Bosnjak, M., Ajzen, I., & Schmidt, P. (2020). The theory of planned behaviour: Selected recent advances and applications. Europe's Journal of Psychology, 16(3), 352.

Calvo-Porral, C., & Pesqueira-Sanchez, R. (2020). Generational differences in technology behaviour: comparing millennials and Generation X. Kybernetes, 49(11), 2755-2772

Cao, T. K., Dang, P. L., & Nguyen, H. A. (2016). Predicting consumer intention to use mobile payment services: Empirical evidence from Vietnam. International Journal of Marketing Studies, 8(1), 117–124.

Chien, P. M., Sharifpour, M., Ritchie, B. W., & Watson, B. (2017). Travellers' health risk perceptions and protective behaviour: A psy¬cho¬logical approach. Journal of Travel Research, 56(6), 744–759.

Chuang, L.-M., Liu, C.-C., & Kao, H.-K. (2016). The Adoption of Fintech Service: TAM perspective. In International Journal of Management and Administrative Sciences (IJMAS, 3(7),1-15.

Chung, J. H., Stone, J., Gyamfi-Bannerman, C., & Metz, T. D. (2019). What can we do to make the fellowship application process better? American Journal of Obstetrics & Gynecology MFM, 1(4), 1-12

Chen, W., Wu, W., & Zhang, T. (2023). Fintech development, firm digitalization, and bank loan pricing. Journal of Behavioral and Experimental Finance, 39(1) 91–101.

Daragmeh, A., Lentner, C., & Sági, J. (2021). FinTech payments in the era of COVID-19: Factors influencing behavioural intentions of "Generation X" in Hungary to use mobile payment. Journal of Behavioral and Experimental Finance, 32(1), 14-26.

Davis, F. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3), 319–339.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003.

Davis, F. D., & Venkatesh, V. (2004). Toward pre-prototype user acceptance testing of new information systems: implications for software project management. IEEE Transactions on Engineering Management, 51(1), 31–46.

Davison, R. M., & Ou, C. X. J. (2017). Digital work in a digitally challenged organization. Information & Management, 54(1), 129–137.

Duarte, P., Santos Estevão, C., Cabral, A., Campón-Cerro, A. M., & Yuliati, U. (2022). Is it possible to feel safe in hotels during the COVID-19? Key factors in hotel guests’ risk and safety perception. Anatolia, 34(4), 579-592.

El Haddad, G., Aimeur, E., & Hage, H. Understanding trust, privacy and financial fears in online payment. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), New York, USA, August 1-3, 2018. 28–36.

Elia, G., Stefanelli, V., & Ferilli, G. B. (2022). Investigating the role of Fintech in the banking industry: What do we know? European Journal of Innovation Management, 26(5), 1365-1393.

Firmansyah, D., Suryana, A., Rifa’i, A. A., Suherman, A., & Susetyo, D. P. (2022). Hexa helix: kolaborasi quadruple helix dan quintuple helix innovation sebagai solusi untuk pemulihan ekonomi pasca covid-19. EKUITAS (Jurnal Ekonomi Dan Keuangan), 6(4), 476–499.

Flavián, C., Guinaliu, M., & Lu, Y. (2020). Mobile payments adoption–introducing mindfulness to better understand consumer behaviour. International Journal of Bank Marketing, 38(7), 1575-1599.

Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statis¬tics. Journal of Marketing Research, 18(3), 382-388

Gai, K., Qiu, M., & Sun, X. (2018). A survey on FinTech. Journal of Network and Computer Applications, 103(1), 262–273.

Granić, A., & Marangunić, N. (2019). Technology acceptance model in educational context: A systematic literature review. British Journal of Educational Technology, 50(5), 2572–2593.

Hair, J F, Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis. Cengage Learning. Hampshire, United Kingdom.

Hair, Joseph F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis: Pearson New International Edition. In British Library Cataloguing-in-Publication Data, 1(2).

Hallak, R., Lee, C., & Onur, I. (2021). Health star ratings and beverage purchase intentions: A study of Australian and New Zealand hospitality consumers. Foods, 10(11), 2764, 01-15.

Hasan, R., Ashfaq, M., & Shao, L. (2021). Evaluating drivers of fintech adoption in the Netherlands. Global Business Review, 22(4), 1097-1102.

Hermanto, S. B., & Patmawati, P. (2017). Determinan Penggunaan Aktual Perangkat Lunak Akuntansi Pendekatan Technology Acceptance Model. Jurnal Akuntansi dan Keuangan, 19(2), 67–81.

Hoofnagle, C. J., Urban, J. M., & Li, S. (2012). Mobile payments: Consumer benefits & new privacy concerns In SSRN Paper (SSRN-ID2045580). BCLT Research Paper. . accessed 11 January 2023

Houston, D. D. (2019). Adopsi penerimaan digital payment pada kalangan milenial. medium. Jurnal Ilmiah Fakultas Ilmu Komunikasi, 7(2), 55–67.

Hu, Z., Ding, S., Li, S., Chen, L., & Yang, S. (2019). Adoption intention of fintech services for bank users: An empirical examination with an extended technology acceptance model. Symmetry, 11(3), 340.

Ignatyuk, A., Liubkina, O., Murovana, T., & Magomedova, A. (2020). FinTech as an innovation challenge: From big data to sustainable development. E3S Web of Conferences, 5(166), 13027.

Indraswara, R., Brata, K. C., & Herlambang, A. D. (2020). Analisis pembelian fitur premium pada pengguna aplikasi Spotify Menggunakan Variabel Hedonic Motivation System. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 4(1), 142-150. E-ISSN, 2548, 964X.

Izuagbe, R., & Popoola, S. O. (2017). Social influence and cognitive instrumental factors as facilitators of perceived usefulness of electronic resources among library personnel in private universities in South-west Nigeria. Library Review, 66(8/9), 679–694.

Jadhav, G. R., & Mittal, P. (2020). Coronavirus disease 2019: Implications for clinical dental care. Journal of Endodontics, 46(9), 1341–1342.

Jungmann, S. M., & Witthöft, M. (2020). Health anxiety, cyberchondria, and coping in the current COVID-19 pandemic: Which factors are related to coronavirus anxiety? Journal of Anxiety Disorders, 73(1), 102239 1-9.

Kurniasih, D., Setyoko, P. I., & Saputra, A. S. (2022). The influence of digital electronic performance, competence and motivation on government organization employees perfor¬mance during the digital era. Journal of Indus¬trial Engineering & Management Research, 3(5), 86–99.

Kusumawardhani, D. A., & Purnaningrum, E. (2021). Penyebaran pengguna digital wallet di indonesia berdasarkan google trends analytics. INOVASI, 17(2), 377–385.

Le, M. T. H. (2021). Examining factors boosting intention and loyalty to use Fintech post-COVID-19 lockdown as normal behaviour. Heliyon, 7(8), 1-9.

Lee, E.Y., Lee, S.B., & Jeon, Y. J. J. (2017). Factors influencing the behavioural intention to use food delivery apps. Social Behavior and Personality: An International Journal, 45(9), 1461–1473.

Lee, J.-C., & Chen, X. (2022). Exploring users’ adoption intentions in the evolution of artificial intelligence mobile banking applications: the intelligent and anthropomorphic perspectives. International Journal of Bank Marketing. 40(4), 631-658.

Lim, S. H., Kim, D. J., Hur, Y., & Park, K. (2019). An empirical study of the impacts of perceived security and knowledge on continuous intention to use mobile fintech payment services. International Journal of Human-Computer Interaction, 35(10), 886–898.

Liu, Y., Yan, W., & Hu, B. (2021). Resistance to facial recognition payment in China: The influence of privacy-related factors. Telecommu¬ni¬cations Policy, 45(5), 102155.

Mahliza, F., Nugroho, L., & Putra, Y. M. (2021). The Effect of E-WOM, Brand Trust, and Brand Ambassador on Purchase Decisions at Tokopedia Online Shopping Site. IOP Conference Series: Materials Science and Engineering, 1071(1), 12017.

Marakarkandy, B., Yajnik, N., & Dasgupta, C. (2017). Enabling Internet banking adoption: An empirical examination with an augmented technology acceptance model (TAM). Journal of Enterprise Information Management, 30(2), 263–294.

Mazambani, L., & Mutambara, E. (2019). Predicting FinTech innovation adoption in South Africa: the case of cryptocurrency. African Journal of Economic and Management Studies, 11(1), 30-50.

Mohammed, I. B., & Isa, S. M. (2020). The role of the Internet of Things (IoT) in the containment and spread of the novel COVID-19 pandemic. In Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis, 9–119. Book, Singapore: Springer Retrieved from )

Momani, A. M., & Jamous, M. (2017). The evolution of technology acceptance theories. International Journal of Contemporary Computer Research (IJCCR), 1(1), 51–58.

Montano, D. E., & Kasprzyk, D. (2015). Theory of reasoned action, the theory of planned behaviour, and the integrated behavioural model. In Health behaviour: Theory, research and practice, 70(4), 67-96.

Moreira-Santos, D., Au-Yong-Oliveira, M., & Palma-Moreira, A. (2022). Fintech Services and the Drivers of Their Implementation in Small and Medium Enterprises. Information, 13(9), 409.

Morosan, C. (2012). Theoretical and empirical considerations of guests’ perceptions of biometric systems in hotels: Extending the technology acceptance model. Journal of Hospitality & Tourism Research, 36(1), 52–84.

Nasution, S. A., Siahaan, B. T., Wangarry, A. R., & Syaefudin, F. I. M. (2022). Determinan Minat Masyarakat Melakukan Investasi Online di Masa Pandemi Covid-19 (Studi Empiris Dari Cina dan Indonesia). Jurnal Ekonomi Bisnis, Manajemen dan Akuntansi (JEBMA), 2(3), 93–99.

Niswah, F. M., & Legowati, D. A. (2019). Muslim millennials intend to donate to charity using the fintech platform. Journal of Islamic Monetary Economics and Finance, 5(3), 623–644.

Nugroho, A., & Purwanti, E. Y. (2018). Determinan inklusi keuangan di Indonesia (global findex 2014). Jurnal Dinamika Eko¬nomi Pembangunan, 1(1), 1–13.

Oliveira, T., & Martins, M. F. (2010). Understanding e-business adoption across industries in European countries. Industrial Manage¬ment and Data Systems, 110(9), 1337–1354.

Putra Y. (2016). Theoritical Review : Teori Perbedaan Generasi. Jurnal Ekonomi dan Bisnis Among Makarti, 9(2), 123–134.

Safa, N. S., Sookhak, M., Von Solms, R., Furnell, S., Ghani, N. A., & Herawan, T. (2015). Information security conscious care behaviour formation in organizations. Computers & Security, 53(1), 65–78.

Schepers, J., & Wetzels, M. (2007). A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Information & Management, 44(1), 90–103.

Humas, (2021) PPKM Luar Jawa-Bali Dilan¬jut¬kan Hingga 20 September, Level 4 Turun Jadi 23 Daerah. (2022, November 25) Retrieved from

Shahzad, A., Zahrullail, N., Akbar, A., Mohelska, H., & Hussain, A. (2022). COVID-19’s Impact on fintech adoption: Behavioral intention to use the financial portal. Journal of Risk and Financial Management, 15(10), 428.

Shin, D.H. (2010). Modelling the interaction of users and mobile payment system: Conceptual framework. International Journal of Human-Computer Interaction, 26(10), 917–940.

Shishah, W., & Alhelaly, S. (2021). User experience of utilizing contactless payment technology in Saudi Arabia during the COVID-19 pandemic. Journal of Decision Systems, 30(2–3), 282–299.

Singh, N., Sinha, N., & Liébana-Cabanillas, F. J. (2020). Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of inno¬vativeness, stress to use and social influence. International Journal of Information Manage¬ment, 50(1), 191–205.

Stalmachova, K., Chinoracky, R., & Strenitzerova, M. (2021). Changes in business models caused by digital transformation and the COVID-19 pandemic and possibilities of their measurement—case study. Sustainability, 14(1), 127

Suryana, P. (2022). The Effect of Security, Easy of Transaction on Purchase Decisions at JD. ID. Jurnal Riset Bisnis dan Manajemen, 15(01), 42–49.

Suryono, R. R., Budi, I., & Purwandari, B. (2020). Challenges and trends of financial technology (Fintech): a systematic literature review. Information, 11(12), 1-20.

Taiwo, A. A., & Downe, A. G. (2013). The theory of user acceptance and use of technology (UTAUT): A meta-analytic review of empirical findings. Journal of Theoretical & Applied Information Technology, 49(1). 48-58

Toader, E., Firtescu, B. N., Roman, A., & Anton, S. G. (2018). Impact of information and communication technology infrastructure on economic growth: An empirical assessment for the EU countries. Sustainability, 10(10), 1-22.

Tsai, T.-H., Chang, H.-T., Chen, Y.-J., & Chang, Y.-S. (2017). Determinants of user acceptance of a specific social platform for older adults: An empirical examination of user interface characteristics and behavioural intention. PloS One, 12(8), 1-23.

Tubaishat, A. (2018). Perceived usefulness and perceived ease of use of electronic health records among nurses: Application of Technology Acceptance Model. Informatics for Health and Social Care, 43(4), 379–389.

Venkatesh, V., & Davis, F. D. (2000). Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2), 186–204.

Vuorikari, R., Punie, Y., Carretero Gomez, S., & Van den Brande, G. DigComp 2.0: The Digital Competence Framework for Citizens. In Joint Research Centre-Ipts EU Publications (June 2016).

Widiarsani, N. M., Sulistyawati, A. S., Nyoman, N., Aryanti, S., & Nimadewidiarsani, E. (2018). Identifikasi dan persepsi wisatawan terhadap capsule hotel di kuta bali. Jurnal Kepariwisataan dan Hospitalitas, 2(1), 165–182.

Won-jun, L. (2018). Understanding consumer acceptance of Fintech service: An extension of the TAM model to understand Bitcoin. IOSR Journal of Business and Management, 20(7), 34–37.

Yan, L.-Y., Tan, G. W.-H., Loh, X.-M., Hew, J.-J., & Ooi, K.-B. (2021). QR code and mobile payment: The disruptive forces in retail. Journal of Retailing and Consumer Services, 58(1), 1-9.

Yogiyatno, W. (2019). Initiating the Development of the Ubiquitous Learning Environment as a Projection of the Ubiquitous Environment in South Korea. Ideguru: Jurnal Karya Ilmiah Guru, 4(1), 84–94.




How to Cite

Nurhayani, U., Dongoran, F. R., Syah, D. H., & Sagala, G. H. (2024). Fintech Acceptance Among MSMEs: A Post-Covid 19 Response. Jurnal Akuntansi Dan Keuangan, 26(1), 56-66.