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ABSTRACT 

  

This study proposed two new classes of GARCH (1,1) model by applying the Tukey 

transformations to the returns and to the lagged variance. The behavior of return volatility 

was investigated on the basis of models with normal and Student-t distributions for return 

error. The competing models were estimated by using the Excel Solver and Matlab tools. The 

empirical analysis is based on simulated data, daily exchange rates of the IDR/USD, and 

daily stock indices of FTSE100 and TOPIX. This study recommends the use of Excel Solver 

for finance academics and practitioners working on volatility using GARCH (1,1) models. Our 

empirical findings conclude that GARCH (1,1) models under Tukey transformations should 

be considered in risk management decisions since the models are more appropriate than 

standard for describing returns and volatility of financial time series and its stylized facts 

including fat tails and mean reverting. The Tukey transformed returns imply a shorter 

volatility half-life, and thus this study suggests that investors should invest the observed 

assets in a shorter time period to obtain higher returns. 
 

Keywords:  Tukey transformation; excel Solver; GARCH; matlab; volatility; JEL classifica-

tion; C22; C51; C58. 

 
INTRODUCTION 

 

Volatility of asset returns has an essential role 

to play in all markets because the financial vola-

tility can be statistically interpreted as the stan-

dard deviation of the returns changes in the 

specific time period. It is well known that the 

financial volatility is typically heteroscedastic, 

which means the volatility changes over time. A 

popular class for the time-varying volatility among 

practitioners in the finance area is the GARCH 

model proposed by [7], which is a generalization of 

the ARCH model proposed by [16].  

Several GARCH extensions have been intro-

duced in the finance literature to improve some 

aspects of the GARCH model so that the models 

are more flexible and adequate in accommodating 

some characteristics and dynamics of a time series, 

for example, see [9] and [22] for the survey of 

GARCH-type models. One extension to the 

GARCH model is to apply the Box–Cox (BC) trans-

formations for the conditional variance (squared 

volatility) specification as introduced by [22] in the 

context of ARCH model and by [21] in the context 

of GARCH model, where the transformed variance 

follows a pure autoregressive process. In the 

context of Stochastic Volatility (SV) models, BC 

transformation was applied in the lagged variance 

of the log-variance process by [32] and [25] and in 

the Realized Variance (RV) data by [26]. Empiri-

cally, they showed that the proposed model is 

superior than the standard model. Alternatively, 

[31] and [35] applied the Box–Cox transformations 

to the asset returns under the GARCH and ARCH 

specifications, respectively. Sarkar provides a 

maximum likelihood method and a Lagrange 

multiplier test and then empirically shows that the 

extended Box–Cox transformation is strongly 

favored. Meanwhile, [35] apply the shifted BC 

Box–Cox transformation and provide a second 

order least square method to estimate the proposed 

model.  

Motivated by the previous studies, the main 

contribution of this study is to extend the GARCH 

model by applying the simple power transfor-

mations family. First, this study modifies and 

extends the models proposed in [31] and [35] to the 

GARCH specification with Student-t distributed 

errors. Second, this study applies the simple power 

transformation in the lagged variance of the 

GARCH process. Third, this study applies two 

proposed models by employing normal and Stu-

dent-t distributions for return error. Many empi-

rical studies, e.g. see [8,36,12], and [11], showed 

that majority of the asset return errors are not 

normally distributed. Furthermore, the empirical 
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studies reveal a fact that the financial return dis-

tributions are leptokurtic, i.e. the returns have 

heavy/fat tails. Therefore, the assumption of the 

Student-t distribution would be much appropriate 

than the normal distribution assumption. The 

performance of both extensions is investigated on 

the GARCH (1,1) model adopting the simulated 

and real data. Fourth, this study investigates the 

use of Excel Solver to estimate the extension 

models. The parameter estimates implied by Excel 

Solver are compared with those obtained using 

Markov Chain Monte Carlo (MCMC) procedure in 

the Matlab software. To the best authors know-

ledge, the contribution of our study is the first in 

literature. 

This paper is organized as follows. Section 2 

reviews the past literature of GARCH modeling 

and summarizes the relevant articles. Section 3 

describes with the proposed models and estimators, 

the data used in this study, the criteria for 

adequacy of models, and some properties of the 

parameters. Empirical results based on simulation 

data and application for the daily exchange rate 

and stock data is reported in Section 4. Finally, 

Section 5 gives some conclusions and extensions for 

the future work. 

The GARCH (1,1) model is perhaps the most 

popular model in the GARCH-type models and is 

often used in many empirical studies in the field of 

finance. The model implies that today’s variance 

can be predicted based on yesterday’s squared 

residuals and variance. [19] compared 330 ARCH-

type models and they found that there is no 

empirical evidence that the GARCH (1,1) model is 

outperformed by other models. The GARCH (1,1) 

modeling framework is expressed 

                        
  

  
         

       
 } (1) 

where    ,    , and      to assure positive 

conditional variances   
 , and          

ensures variance stationarity. In the model (1),    

is the mean of the return and    is the innovation 

(also called shock, error or mean residual). For 

daily data it can often assume that      as in 

this study. 

The GARCH (1,1)-type models was applied by 

[20] to Indonesian commodity market, [28] to 

Indonesian foreign exchange market, [5] to Indo-

nesian stock market, and [15] to Indonesian capital 

market. [20] examined the predictability of five 

GARCH-type models, namely ARCH, GARCH, 

GARCH-M, EGARCH, and TGARCH, for seven 

primary agricultural commodities in Indonesian 

export and found that the predictability of the 

considered models is different for each commodity. 

[28] applied the GARCH (1,1) model and some of 

its variations, such as ARCH(1), TARCH(1,1), TS-

GARCH (1,1), GJR-GARCH (1,1), NARCH(1), and 

APARCH(1,1), for the daily selling exchange rates 

of the EUR (Euro), JPY (Japanese Yen), and USD 

(US Dollar) against the IDR (Indonesian Rupiah) 

covering period from January 2010 to December 

2015 and found that the GARCH (1,1) model 

provided the best fit for the selling rates EUR data. 

In that case, they used the Adaptive Random Walk 

Metropolis (ARWM) method in the MCMC algo-

rithm to estimate the models. Meanwhile, [5] 

applied the GARCH (1,1) model to the daily data 

prices of seven Indonesian stocks for the period 

from July 2007 to September 2015. They estimate 

the model using the maximum likelihood estima-

tion method. The results show that GARCH (1,1) 

model provides evidence of volatility clustering for 

returns from the prices of Indonesian stocks. [15] 

compared the volatility shock persistence sectoral 

indexes between the sectors of consumer goods 

(CONS) and property-real estate (PROP) for the 

period from January 2010 to December 2015. Due 

to the volatility shock of both indices moves back to 

normal stability quite quickly, [15] recommended 

to the investors who avoid the risk to invest in both 

sectors. 

In the previous section this study mentioned 

that financial returns data in fact are not normally 

distributed, so most often the return error is 

assumed to follow the Student-t distribution. This 

assumption was applied by [27] to the APARCH 

(1,1) model which adopts the exchange rates of five 

foreign currencies against the IDR for the daily 

period from January 2010 to December 2016. Their 

empirical results show that the model with the 

Student-t distribution provides a better fitting 

compared to model with the normal distribution.  

Alternatively, there are several functions that 

transform a non-normal distribution into a normal 

distribution or approximately so. One of these 

methods that is commonly used both in theoretical 

work and in practical applications is the Box–Cox 

(BC) transformation proposed by [10]. Since the BC 

transformation only works with positive values, 

they also proposed a modification form of the BC 

transformation, called the shifted BC (SBC) trans-

formation, which applicables to data containing 

negative values. Another modification which incor-

porates unbounded support for the tranformed 

data was suggested by [6], known as extended BC 

(EBC) transformations. 

The EBC and SBC transformations, respec-

tively, were applied by [31] and [35] to transform 

the return data with its volatility following 

GARCH-type models. [31] employed the maximum 

likelihood method to estimate GARCH model and 

also developed a Lagrange Multiplier test to check 
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the model adequacy. The model was examined on 

the daily closing prices of the Bombay Stock 

Exchange Sensitive Index covering the period from 

January 1984 to January 1996. The empirical 

findings show that the proposed model is strongly 

favored. Meanwhile, [35] proposed the second order 

least square method to estimate the ARCH(1,1) 

model. 

In the context of an extension of the volatility 

equation in asymmetric GARCH models, the BC 

transformation was applied by [21] to both res-

ponse and regressor. Meanwhile, in the context of 

stochastic volatility models, [32] and [25] applied 

BC transformations to lagged volatility. Their 

empirical results show that the proposed models 

provide better performance than the standard 

model. 

 

RESEARCH METHOD 

Extensions of GARCH model 

A lot of statistical analysis requires the nor-

mality assumption for variable. When a variable is 

not normally distributed, there is a family of power 

transformations, such as the BC power trans-

formations, may help to normalizing variable. [10] 

proposed a family of functions that can transform 

non-normal variable into approximately normal 

variable. The form of the BC transformation of the 

variable x is given by: 

       {
    

 
     

         

 

where   . This transformation was modified by 

[6] to the EBC transformation so that the trans-

formation applies for each values of a variable 

when   : 

       
| |          

 
  

Nevertheles, due to the fact that the variance 

of variable does not change by linear transforming, 

this study considers the following alternative 

version proposed by [33], called Extended Simple 

Tukey (EST) transformation: 

          | |              

Furthermore, following [31], we define 

                    | |       

Although not reported, the early empirical 

studies as in [31] showed that the Sarkar’s model is 

outperformed by the standard model in all observ-

ed data cases. 

This study now proposes the first generaliza-

tion of the GARCH (1,1) given as follows: 

                              
  

  
         

       
 } (2) 

where             follows the EST transforma-

tions. The above model is then called the ESTR-

GARCH (1,1) model. The second generalization is 

to use the Simple Tukey (ST) transformation to 

transform the lagged variance. The extension 

model called ST(1)-GARCH (1,1) is given by : 
                     

  

  
         

         
     

- (3) 

where 

      
      ,

   
          

      
        

 

Notice that the value of     , for i = 1, 2, 

corresponds to no transformation. 
 

Distribution of Return Error 

The extended GARCH (1,1) models are then 

estimated on the basis of the log-likelihood func-

tion. When    in Eqs. (2) and (3) is assumed to 

follow a normal distribution with mean zero and 

standard deviation   , the likelihood of the original 

data consists of the likelihood of the transformed 

data multiplied by the absolute value of the 

Jacobian of EST transformation. Thus, the log-

likelihood (LL) function of models is given by: 

                |           

  
 

 
∑*        
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 (∑   |        |

 

   

)  

where the process of conditional variance   
  

follows the ST transformation. Following [8], when 

   is conditionally Student-t distributed with mean 

zero, standard deviation   , and degrees of freedom 

 , the LL function of model takes the form  

                |           

     (
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)  

where   
  follows the ST transformation. The   

Student-t distribution is  a bell-shaped, symmetric, 

and centered around zero, like the normal distri-

bution, but has  heavier  tails  than  the  normal. 

As the number of the degrees of freedom increases, 

the Student-t distribution converge to the standard 

normal distribution [3]. 
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Estimation Tools 
 

This study uses Excel Solver and Matlab to 
estimate the model parameters that maximize the 
log-likelihood function. Excel Solver is preferred by 
the financial practitioners who do not have strong 
programming knowledge. The use of Excel Solver 
to estimate the standard GARCH (1,1) model was 
studied by, e.g. [2,34], and [29]. In particular, the 
steps involved in estimating the considered models 
follow [29]. 

To analyse whether the use of Excel Solver is 
recommended in practice, the estimation results 
are confirmed using both simulation and limited 
real data. In the simulation case, the accuracy of 
Excel Solver estimates compared to the true values 
is measured by relative error. In the case of real 
data, estimates obtained by the GRG Non-Linear 
method in Excel Solver and by the Adaptive 
Random Walk Metropolis (ARWM) method in 
Matlab are compared. The latter method was pro-
posed by [4] and employed by [24] for the standard 
GARCH (1,1) model. They found that the method 
to be statistically efficient and computationally 
fast.  
 

Data 

An empirical comparison of competing models 
is investigated by fitting them to the daily ex-
change rate returns of the IDR against the US 
Dollar (USD) and the daily international stock 
returns including FTSE100 (Financial Times Stock 
Exchange 100 Index) and TOPIX (Tokyo Stock 
Price Index). Notice that the USD is one of the 
biggest currencies in the world’s economy [30]. This 
currency is the most traded currency in the forex 
market and the world’s leading reserve currency. 
The FTSE100 Index is a share index of the 100 top-
performing companies traded on the London Stock 
Exchange with the highest market capitalisation 
[37]. This index is the most frequently used 
indicator for the UK stock market. Meanwhile, 
TOPIX is the most important index for the Tokyo 
Stock Exchange (TSE) in Japan, tracking all 
domestic companies listed on the TSE’s First 
Section [23]. The TSE is the fourth largest stock 
exchange in the world. 

The daily closing prices of buying rates 
IDR/USD are obtained from the webpage of Bank 
Indonesia (www.bi.go.id) over the period from 
January 2010 to December 2017, excluding 
weekends and national holidays. The daily returns 
of FTSE100 cover data from January 2000 to 
December 2013, which are publicly available from 
Oxford-Man Institute's Realised Library (https://re-
alized.oxford-man.ox.ac.uk/data/download), while 
the daily returns of TOPIX cover data from Janu-
ary 2000 to December 2014 and are available from 
the corresponding author upon request. 

Table 1. Descriptive statistics. 

Stats. IDR/USD FTSE100 TOPIX 

Observations 1891 3509 3665 

Mean 0.0197 –0.0385 –0.0073 

Median 0.0314 –0.0061 0.0274 

Std. Dev. 0.4378 0.9979 1.4138 

Maximum 2.7128 7.0441 12.8646 

Minimum –2.8583 –5.7603 –10.0071 

Skewness –0.3501 –0.1399 –0.3438 

Kurtosis 9.17 6.98 8.93 

JB stats. 3036.7 2321.5 5434.9 

Crit. Val. 5.96 5.98 5.98 

 

The return series of exchange rates were 

calculated by 100 times the logarithmic difference 

of the closing price of the current day and the 

closing price of the previous day, i.e.  

       [               ]  

where   is the exchange rate at day t. Table 1 

presents the descriptive statistics for the daily 

returns. The daily mean value for all returns is 

close to zero as the previous assumption. The 

largest standard deviation and widest range are 

given by TOPIX, which indicate that the fluc-

tuation of TOPIX returns is most significant. Since 

the values of skewness and kurtosis indicate a 

distribution type of the data, it is important to test 

it on the observed data. Skewness values near zero, 

indicating the distribution of all returns is rela-

tively symmetric around its mean value. The 

kurtosis value significantly exceeds 3 for all assets, 

which shows evidence of heavy tails. Therefore, it 

can be assumed that the distribution of returns in 

all assets is symmetric and has a heavier tail than 

the normal distribution. The Jarque–Bera (JB) test 

confirms that the distribution of asset returns is 

not normally distributed, indicated by the value of 

JB statistic is greater than the critical value. 

 

Evaluation of Model 

To select the appropriate model between M0 

and M1 which provides the best fitting model, this 

study uses discrimination criteria such as the Log-

likelihood Ratio (LLR) statistics: 

        
  (      

       
)  

where the critical values of    distribution with 1 

degree of freedom at significance levels 1%, 5%, 

and 10% are 6.64, 3.84, and 2.71, respectively. 

This study will also complete the analysis 

based on some characteristics driven by volatility 

persistence      , e.g. see [1,18], dan [38], 

and, such as unconditional (long-run, average) 

volatility defined by    
 

   
 and half-life of a 

volatility shock defined by    
      

      
. The half-life 
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of volatility shock measures the time periods 

(number of days in this study case) for the variance 

to move half way back towards its unconditional 

volatility. According to [1], an asset having the half-

life of a volatility shock about n days suggests to 

investors should open a position at 0 days and 

must close after 2n days.  

 

RESULT AND DISCUSSION 
 

This section conducts simulation and empiri-

cal studies to compare the performance of the com-

peting models and to investigate the use of Excel 

Solver. 

 

Simulation Study 

The main purpose of this simulation study is 

to demonstrate: (1) whether Excel Solver is able to 

estimate the parameter of considered models in 

terms of relative error, and (2) whether the 

proposed models outperforms the basic model. 

Two return series are generated from ESTR-

GARCH (1,1) and ST(1)-GARCH (1,1) models with 

normal distribution for the return error. Each 

simulated data set is the same length, i.e. 1000 

observations. The true parameter values for each 

model were set as in Tables 1 and 2 based on the 

result of empirical studies in financial literatures. 

Relative error between the true parameter and its 

estimate was calculated to measure the accuracy of 

the Excel Solver estimates. Excel Solver was initia-

lized by setting        ,        ,       , 

and         with the log-likelihood value of –

1420.51 for fitting into the ESTR-GARCH (1,1) 

model and        ,      ,       , and 

        with the log-likelihood value of –848.28 

for fitting into the ST(1)-GARCH (1,1) model. Each 

simulated data set was also fitted into the GARCH 

(1,1) model to compare their performances. 

Tables 2 and 3 summarize the simulation 

results, including the parameter estimates and log-

likelihood value. First, in terms of relative error, all 

cases demonstrate that Excel Solver is a reliable 

tool for estimating the parameters  ,  , and      

but less reliable for estimating the parameters  . 

This study notes that Excel Solver is very sensitive 

to initial value and a good initial value therefore 

needs to be close enough to the true value. Poor 

choice of initial values can lead to an ill-behaved 

estimate and causes convergence problem. Second, 

by comparing the log-likelihood values of the pro-

posed and standard models, the value of         is 

58.58 which is greater than the greatest critical 

value of    distribution with 1 degree of freedom. It 

indicates that the ESTR-GARCH (1,1) model is 

significantly better than the GARCH (1,1) model. 

Meanwhile, the value of          is 2.30 which is 

not significant at any conventional level. It means 

that the GARCH (1,1) and ST(1)-GARCH (1,1) 

models have same performance. 

 
Table 2. Simulated ESTR-GARCH (1,1) model. 

Parameter 
True 

value 

ESTR-GARCH (1,1) 
GARCH 

(1,1) 

Estimate 
Relative 

error 
Estimate 

  0.04 0.064 59.0% 0.071 

0.033 

0.897 

  0.05 0.032 35.6% 

  0.90 0.895 0.5% 
   0.80 0.824 3.1% - 

    0.95 0.927 - 0.931 

Total Log(L) –1388.30  –1417.59 

 
Table 3. Simulated ST(1)-GARCH (1,1) model. 

Parameter 
True 

value 

ST(1)-GARCH (1,1) 
GARCH 

(1,1) 

Estimate 
Relative 

error 
Estimate 

  0.005 0.0015 70.0% 0.0248 
  0.250 0.2210 11.6% 0.2197 
  0.700 0.7242 3.5% 0.7249 
   0.900 0.9027 0.3% - 

    0.950 0.9452 - 0.9446 

Total Log(L) –842.58  –843.73 

 

Application to Real Data 

Table 4 reports the empirical results of the 

competing models which are estimated by using 

the GRG Non-Linear method in Excel Solver and 

the ARWM method in Matlab. This study labels 

the GARCH (1,1), ESTR-GARCH (1,1), and ST(1)-

GARCH (1,1) models with normally distributed 

error as Model (1), (2), and (3), respectively, and 

then called GARCHn(1,1), ESTR-GARCHn(1,1), 

and ST(1)-GARCHn(1,1) models. It seems that 

Excel Solver and Matlab give similar estimates for 

most cases, even though in the case of ESTR-

GARCHn(1,1) model Excel Solver produces     

for the IDR/USD data and       for the 

FTSE100 and TOPIX data, which do not satisfy 

the model constraints. This is due to the unavaila-

bility of strict inequality for the constraints in the 

Excel Solver tool, the estimate of   is very close to 

zero, and the estimate of     is very close to 

unity. The situation of       is known as the 

Integrated GARCH (IGARCH) model, which was 

proposed by [17]. IGARCH model implies that the 

unconditional variance of return series is not finite 

and multiperiod forecasts of variance will trend 

upwards [13]. Therefore, the next analysis is on the 

basis of estimation results obtained by the ARWM 

method in Matlab. 
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First, the 95% of HPD (Highest Posterior 

Density) interval of    in the ESTR-GARCHn(1,1) 

model excludes 1 (the basic version) in all cases. 

Thus, all observed data provide significant evi-

dence to transform the original return data using 

the EST transformation against no transformation 

case. In the case of ST(1)-GARCHn(1,1) model, the 

95% and 90% of HPD intervals of    exclude 1 for 

the IDR/USD and TOPIX data, respectively. Thus, 

both data provide significant evidence against the 

basic model. Second, the total log-likelihood esti-

mates and the LLR statistics indicate that the 

basic GARCHn(1,1) model provide the best fit for 

all data at any conventional level, whereas the 

ST(1)-GARCHn(1,1) model provide a better fit than 

the GARCHn(1,1) for the IDR/USD and TOPIX 

data. This result is consistent with significance of 

ST parameter. Both findings indicate the extended 

GARCHn models have the potential to provide a 

better fitting than the basic GARCHn model. 

Regarding the volatility persistence, the esti-

mate of   in the ESTR-GARCHn(1,1) model is 

lower than those in the GARCHn(1,1) model, 

which is suggestive of a low persistency of volati-

lity. It indicates that volatility implied by the 

ESTR-GARCHn(1,1) model is more volatile (less 

smooth) but less persistent. With the lower persis-

tence in volatility, the ESTR-GARCHn(1,1) model 

Table 4. Empirical results of GARCHn(1,1) models. 

Data Model Tool 𝜔 𝛼 𝛽 𝜆  𝜆  𝜙 Total Log(L) 

IDR/USD (1) Solver 0.0063 0.2122 0.7807 - - 0.9929 –780.84 

Matlab 0.0070 0.2128 0.7739 - - 0.9867 –782.09 

(2) Solver 0.0066 0.1915 0.7895 0.8005 - 0.9810 –682.79 

Matlab 0.0074 0.2031 0.7757 0.8003* - 0.9788 –684.67 

(3) Solver 0.0000 0.2410 0.7038 - 0.9187 0.9448 –771.14 

Matlab 0.0009 0.2477 0.7028 - 0.9248* 0.9505 –773.50 

FTSE100 (1) Solver 0.0053 0.0901 0.9064 - - 0.9964 –4260.46 

Matlab 0.0061 0.0929 0.9022 - - 0.9951 –4261.88 

(2) Solver 0.0052 0.0866 0.9087 0.9174 - 0.9952 –4239.91 

Matlab 0.0056 0.0872 0.9073 0.9173* - 0.9945 –4241.83 

(3) Solver 0.0021 0.0883 0.9117 - 0.9931 1.0000 –4259.72 

Matlab 0.0048 0.0903 0.9057 - 0.9971 0.9960 –4261.67 

TOPIX (1) Solver 0.0451 0.1092 0.8696 - - 0.9788 –6040.86 

Matlab 0.0457 0.1104 0.8685 - - 0.9789 –6042.29 

(2) Solver 0.0398 0.1029 0.8748 0.9235 - 0.9777 –6022.02 

Matlab 0.0433 0.1077 0.8685 0.9237* - 0.9762 –6023.97 

(3) Solver 0.0241 0.1078 0.8922 - 0.9830 1.0000 –6037.74 

Matlab 0.0383 0.1109 0.8775 - 0.9886** 0.9884 –6040.87 

Note: * (or **): value deviates significantly from 1 in terms of 95% (or 90%) Highest Posterior Density 

interval (see [14] for details) 

 

Table 5. Empirical results of GARCHt(1,1) models. 

Data Model Tool 𝜔 𝛼 𝛽 𝜆  𝜆  𝜈 𝜙 Total Log(L) 

IDR/USD (4) Solver 0.0030 0.2037 0.7963 - - 4.13 1.0000 –583.65 

Matlab 0.0034 0.2049 0.7896 - - 4.22 0.9945 –585.83 

(5) Solver 0.0028 0.2023 0.7977 1.0530 - 3.71 1.0000 –581.42 

Matlab 0.0029 0.1946 0.8005 1.0488* - 3.81 0.9951 –583.42 

(6) Solver 0.0000 0.2839 0.7161 - 0.9452 3.82 1.0000 –577.45 

Matlab 0.0009 0.2726 0.7141 - 0.9507* 4.01 0.9867 –580.41 

FTSE100 (4) Solver 0.0046 0.0839 0.9131 - - 11.33 0.9971 –4238.95 

Matlab 0.0052 0.0833 0.9123 - - 12.43 0.9956 –4240.97 

(5) Solver 0.0048 0.0842 0.9119 0.9510 - 19.53 0.9960 –4235.47 

Matlab 0.0058 0.0876 0.9068 0.9484* - 23.55 0.9944 –4235.93 

(6) Solver 0.0019 0.0823 0.9177 - 0.9942 11.49 1.0000 –4238.42 

Matlab 0.0048 0.0852 0.9104 - 0.9982 12.71 0.9956 –4241.88 

TOPIX (4) Solver 0.0379 0.0943 0.8866 - - 11.51 0.9810 –6007.59 

Matlab 0.0435 0.1004 0.8781 - - 12.25 0.9785 –6009.84 

(5) Solver 0.0376 0.0945 0.8860 0.9826 - 13.15 0.9805 –6007.10 

Matlab 0.0522 0.1110 0.8613 0.9696* - 16.76 0.9723 –6013.34 

(6) Solver 0.0190 0.0933 0.9067 - 0.9849 11.77 1.0000 –6005.00 

Matlab 0.0262 0.0917 0.9014 - 0.9882* 12.50 0.9931 –6007.78 
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produces smaller unconditional volatility and shor-

ter volatility half-life than the GARCHn(1,1) 

model. So, GARCHn(1,1) model under ST transfor-

mation for return implies an asset provides a 

shorter time period to operate freely. It means that 

the model causes the value of assets to be more 

sensitive to new information. This recommends 

that investors of IDR/USD, FTSE100, and TOPIX 

must open a position at 0 days and must close after 

the 66th day, 252nd day, and 58th day, respectively. 

Meanwhile, in the case of ST(1)-GARCH (1,1) 

model, there is no conclusion about persistence, 

unconditional volatility, and half-life of volatility. 

The results of the unconditional volatility and half-

life of volatility are presented in Table 6. 

Next, this study focuses on the use of the 

Student-t distribution for the GARCH (1,1), ESTR-

GARCH (1,1), and ST(1)-GARCH (1,1) models, res-

pectively then called GARCHt(1,1), ESTR-

GARCHt(1,1), and ST(1)-GARCHt(1,1) models, 

which are labeled as Model (4), (5), and (6) in Table 

5. Overall, the empirical results showed that Excel 

Solver and Matlab provide similar estimation 

values, except the estimate of degrees of freedom in 

the ESTR-GARCH (1,1) model adopting the 

FTSE100 and TOPIX data. In particular, this 

study found that Solver Excel produces estimates   

and   which give       in the ST(1)-

GARCHt(1,1) model for all cases and     for the 

IDR/USD case. This confirms the previous result in 

the case of normal distribution. However, it can be 

considered that Solver Excel is quite capable to 

estimate the GARCH (1,1) models with normal or 

Student-t distributions for return error. 

As the previous discussion, the following ana-

lysis is on the basis of estimation results obtained 

by the ARWM method in Matlab. The LLR test 

indicates that the models with Student-t distri-

bution for returns error provide better fitting than 

the model with normal distribution. The ESTR-

GARCHt(1,1) model provides a better fitting than 

the GARCHt(1,1) model for IDR/USD and 

FTSE100 data, indicated by the LLR test statistic 

of 4.82 and 10.08, respectively, which are signi-

ficant any 5% level. The ST(1)-GARCHt(1,1) model 

provides a better fitting than the GARCHt(1,1) 

model for IDR/USD and TOPIX data, indicated by 

the LLR test statistics of 10.84 and 4.12, 

respectively, which are significant at the 5% level. 

These results indicate that the proposed models 

have the potential to provide better fitting than the 

GARCH (1,1) model. In the case of ESTR-GARCH 

(1,1) model adopting TOPIX data, although the 

95% HPD interval of Tukey parameter excludes 1, 

it does not necessarily confirm the superiority of 

model. 

Table 6. Unconditional volatility VL and half-life of a 

volatility shock Lh. 

Model 
VL Lh 

IDR/USD FTSE100 TOPIX IDR/USD FTSE100 TOPIX 

(1) 0.526 1.245 2.166 51.77 141.11 32.50 

(2) 0.349 1.018 1.819 32.35 125.68 28.78 

(3) 0.018 1.200 3.302 13.65 172.94 59.4 

(4) 0.618 1.182 2.023 125.68 157.19 31.89 

(5) 0.592 1.036 1.885 141.11 123.43 24.68 

(6) 0.068 1.091 3.797 51.77 157.19 100.11 

 
Regarding the degrees of freedom, the models 

applying ST transformations produce smaller 

degrees of freedom than the basic model in the 

IDR/USD case and greater degrees of freedom than 

the basic model in the FTSE and TOPIX cases. 

Regarding the parameters  ,  , dan  , Table 6 

presents the unconditional volatility and half-life of 

volatility shock. The unconditional volatility and 

half life of volatility implied by the the ESTR-

GARCHt(1,1) models respectively is smaller and 

shorter (except the IDR/USD data) than those 

implied by the GARCHt(1,1). In the case of lagged-

volatility transformation, the results of uncondi-

tional volatility and half life of volatility is similar 

in the normal and Student-t cases in terms of 

comparison with the basic model. The findings 

indicate that the incorporation of Student-t distri-

bution into the return error does not affect the 

comparison of unconditional volatility and half life 

of volatility between the proposed models and the 

basic model. 

Furthermore, the use of Student-t distribution 

in the ESTR-GARCH (1,1) model increases the 

unconditional volatility and decreases (except 

IDR/USD data) the half-life of volatility shock. 

Meanwhile, the ST(1)-GARCHt(1,1) increases the 

half-life of volatility shock for IDR/USD and TOPIX 

data but decreases the half-life of volatility shock 

for FTSE data. These results indicate that the new 

shock to volatility of the ESTR-GARCHt(1,1) and 

ST(1)-GARCHt(1,1) models for financial return 

tend to affect the returns for shorter and longer 

periods, respectively. In other words, this suggests 

that the recent information in the ESTR-

GARCHt(1,1) model is more important than old 

information. In practice, the model provides a 

shorter time for investors to operate since the asset 

values are more sensitive to new information. 

 

CONCLUSION 
 

This study investigated the empirical perfor-

mance of two new non-linear classes of GARCH 

model by applying the Tukey transformations to 

the asset returns and the lagged variance. This 

study assumes that return errors follow normal 

and Student-t distributions. On the basis of  Excel 
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Solver estimates, this study suggests the use of 

Excel Solver to estimate the basic GARCH model 

but the use to estimate the extended GARCH 

models depends on the observed data. In terms of 

log-likelihood ratio test, the empirical results show-

ed that the two proposed models have a potential to 

outperform the basic GARCH model. Furthermore, 

the results showed a strong evidence incorporating 

the Student-t into the returns error distribution. 

The results of this study demonstrate that the 

Tukey transformation provides insight to identify 

the time period of investment. A transformation for 

returns provides an opportunity to investors and 

financial experts for short-term investment the 

FTSE100 and TOPIX, which has the shortest half-

life. In contrast, a transformation for lagged 

variance suggests that it is better to invest in the 

FTSE100 and TOPIX for the long-term invest-

ment, which has the longest half-life. For the 

IDR/USD, the short-term investment is recommen-

ded by both transformation. 

 
Implication, Limitation, and Suggestion 

This study employed the GRG Non-Linear 

method in Excel Solver and the ARWM method in 
the Matlab to estimate the considered models. 
Some estimation results obtained by Excel Solver 
do not meet the model constraints since Excel 

Solver does not offer the option “< “nor “>” for 
constraints. In addition, Excel Solver also does not 
provide a confidence interval for parameter esti-
mates so that it cannot confirm the significance of 

the estimates. Therefore, if we are only interested 
in the parameter estimate value, Excel Solver is 
enough. 
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